Extracting domain knowledge from tables of contents

Harald Lüngen
luengen@uni-giessen.de
Justus-Liebig-Universität Gießen

Henning Lobin
henning.lobin@germanistik.uni-giessen.de
Justus-Liebig-Universität Gießen

1. Introduction

Knowledge in textual form is always presented as visually and hierarchically structured units of text, which is particularly true in the case of academic texts. One research hypothesis of the ongoing project Knowledge ordering in texts—text structure and structure visualisations as sources of natural ontologies is that the textual structure of academic texts effectively mirrors essential parts of the knowledge structure that is built up in the text. The structuring of a modern dissertation thesis (e.g. in the form of an automatically generated table of contents - tocs), for example, represents a compromise between requirements of the text type and the methodological and conceptual structure of its subject-matter. The aim of the project is to examine how visual-hierarchical structuring systems are constructed, how knowledge structures are encoded in them, and how they can be exploited to automatically derive ontological knowledge for navigation, archiving, or search tasks. The idea to extract domain concepts and semantic relations mainly from the structural and linguistic information gathered from tables of contents represents a novel approach to ontology learning.

2. Data and annotations

In the present phase, we examine German academic text books, in later phases, dissertations, research articles and historical scientific texts will also be taken into account. A corpus of digital versions of 32 text books from 12 different academic disciplines has been compiled, the textual content and an XML document structure markup was subsequently extracted (e.g. using the Adobe Pro software). Using a series of XSLT style sheets, the initial XML was converted to XML encoding of the document structure according to the TEI P5 guidelines. At the same time, the texts were annotated with morphological analyses and phrase chunking markup using the Tree Tagger and Chunker software from Stuttgart University and converted to a suitable XML representation, and also with dependency-syntactic analysis using the Machinese Syntax Parser by Connexor Oy, resulting in XML markup as well. Further linguistic annotation levels (such as domain terms and lexical-semantic relations) will be added and combined in XStandoff documents representing multilayer annotations that can be queried using XML standards and tools as described in Stührenberg & Jettka (2009).

Presently, all available annotation layers are stored in an eXist native XML database and are queried using the Oxygen XML editor as a database client.

The corpus infrastructure is used to explore the document applying the method of toc fragment analysis as described in the following section, and to implement functions for concept extraction and semantic relation analysis.

2.1. Analysis of toc fragments

Our method of analysing toc fragments consists of the following steps:

1. Identification of a toc fragment
2. Representation of the fragment meaning as a MultiNet
3. Identification of the configuration of elements on different structural levels that induce the fragment meaning
4. Hypothesis about the generalisation of a toc fragment, a structuring schema
5. Corpus research to verify the generalisation hypothesis
Consider the section of the generated table of contents of the text book *Einführung in die Pädagogik* by Raithel et al. (2007) shown in Figure 1. By choosing the heading 5. Ausgewählte Subdisziplinen und Fachbereiche and its immediately superordinated heading (in this case the title of the book) as well as its immediately subordinated headings, we arrive at the toc fragment (or "window") shown in Figure 2. In the toc fragment, four terms from the domain are contained, *Pädagogik, Erlebnispädagogik, Erwachsenenbildung,* and *Gesundheitspädagogik.* The terms identification component must distinguish such expressions denoting domain-specific concepts from relational nouns commonly found in academic and scientific discourse (such as *Einführung, Subdisziplin* and *Fachrichtung*) and from terms denoting text-type structural categories of academic texts such as *Literatur*).

We employ the semantic network approach *Multilayered Extended Semantic Networks* (acronym: MultiNets) by Helbig (2006) to represent the domain concepts and semantic relations between them.

In the semantic network in Figure 3, the concepts *a3_erlebnispädagogik.1.1,* *a3_erwachsenenbildung.1.1,* and *a3_gesundheitspädagogik.1.1* are related to *a3_pädagogik.1.1* by the SUBS relation denoting subordination of (abstract) situations; *a3_pädagogik.1.1* is in turn related to *fach.1.2* and *a3_disziplin.1.1* by the SUB relation denoting the subordination of concepts representing objects. Furthermore, the semantic decompositions of the three compounds are analysed using the relations expressed in a toc fragment. The MultiNet approach is a fully-fledged semantic theory and provides a rich and consistent inventory of semantic entity types, features, relations and functions, and has been previously employed in the syntactic-semantic analysis components of QA systems (Hartrumpf 2005). Using the graphical MWR editor for designing MultiNets, we represent the semantics of the above toc fragment as shown in Figure 3.

[booktitle] Einführung in die Pädagogik
MCONT (mental or informational content), BENF (beneficiary) and METH (method), and the relation between the concept \(c_2 \) representing the textbook as such and \(a_3 _pädagogik \) is specified as MCONT, the relation between \(c_2 \) and its authors as ORIG (mental or informational origin, cf. Helbig 2006).

On account of this analysis, the following hypothesis is formed:

Given a potential structuring schema, consisting of an initial expression \(N \), and an expression \(N-1 \) related to \(N \) by a heading_of relation on the document structure level, and an expression \(N+1 \) to which \(N \) is related by the heading_of relation on the document structure level (cf. Figure 4), if

\[
\begin{align*}
N-1 & \quad N \\
N & \quad N+1
\end{align*}
\]

Figure 4: Toc Schema

- \(N \) contains the lexeme Subdisziplin or a synonym on the lexical level
- and \(N-1 \) contains the domain concept \(A \)
- and \(N+1 \) contains the domain concept \(B \)

then, by multiple application, construct a MultiNet-Schema as represented by the graph in Figure 5.

Figure 5: MultiNet Schema

The Hypothesis is verified by formulating the potential structuring schema as a query to the corpus using the XQuery query language. The query result document then contains a set of toc fragments that can now be inspected as to whether their semantics conform to the hypothesis or not, leading to a small statistic about the validity of the hypothesis. Sometimes the inspection may also lead to a modification of the original query. In the first result fragment in Figure 6, for instance, the superordinate concept \(Wahrnehmung \) is not contained in \(N-1 \), but as the compound modifier of \(\text{Bereich} \) (a synonym of \(\text{Subdisziplin} \)).

In this example it becomes clear that analyses on the morphological and lexical-semantic level interact with the analyses of the structuring information in that both levels provide conditions or constraints when building the semantic analysis of a toc fragment. Our corpus infrastructure is designed such that information from multiple linguistic and structural levels can be taken into account.

2.2. Conclusion

We presently inventorise sets of complex conditions connecting a structuring schema with a MultiNet Schema as constructions in the sense of Construction Grammar (CxG). Construction Grammar (Kay 1995, Östman & Fried 2004) is a theory of grammar which is not based on phrase structure rules operating on lexical elements, but as combinations of constructions in which form schemata are
associated with meaning schemata and is therefore appropriate for the description task at hand. The inventory of constructions will then be employed in ontology learning, particularly for the task of automatically extracting domain concepts and semantic relations between them. Constructions describing document structuring schemata as described above play a role similar to the lexico-syntactic "Hearst Patterns" described in Hearst (1992), which have been employed for extracting semantic relations from running text.

References

Notes
1. funded within the framework of LOEWE, the excellence initiative of the state of Hesse, as part of the LOEWE-Schwerpunkt Kulturtechniken und ihre Medialisierung, cf. http://www.zmi.uni-giessen.de/projekte/projekt-36.html.
2. We would like to thank the publishers Facultas, Haupt, Narr/Francke/Attempto, Springer, Vandenhoek & Ruprecht, and Wissenschaftliche Buchgesellschaft for kindly making available digital versions of textbooks for us.
3. http://www.ims.uni-stuttgart.de/projekte/corpora/TreeTagger/
5. http://exist-db.org/
7. We consider terms to be linguistic expressions that refer to domain concepts.
8. which was kindly made available for us by Professor Helbig's group in Hagen.
9. An a3_ prefix in a concept name indicates that the concept was not found in the required reading in the semantic lexicon HagenLex (Glöckner et al. 2007) which is consulted by the MWR tool.
10. Other titles from our corpus cited in Figure 6 are Brosius (2008), and Schründer-Lenzen (2008).