
Digital Humanities 2010

1

From Codework to Working
Code: A Programmer's
Approach to Digital
Literacy

Bork, John
jrbork@wcnet.org
University of Central Florida

What does it mean to be digitally literate?
Obviously it entails a basic familiarity with
commonly used technologies, so that one
may navigate the technological life world that
has permeated nearly every aspect of the
human one. One aspect of this knowledge
is the recognition of computer languages,
communications protocols, syntactic forms,
passages of program code, and command
line arguments, even when they have been
taken out of their operational context for
use as literary and rhetorical devices. In
addition to the infiltration of the abbreviated
language of email and text messaging into
mainstream print media, it is now also
commonplace to encounter programming
keywords, symbols, operators, indentation,
and pagination entwined with natural,
non-technical, mother tongue expressions.
Codework is the term associated with the
literary and rhetorical practice of mixing human
and computer languages (Hayles, 2004; Raley,
2002; Cramer, 2008). Types of codework
span from intentionally arranged constructions
intended for human consumption that do
not execute on any real computer system, to
valid expressions in bona fide programming
languages that are meaningful to both human
and machine readers. Examples of the former
include the work of Mez (Mary-Anne Breeze)
and Talon Memmott, of the latter, the work of
John Cayley and Grahan Harwood (Raley, 2002;
Fuller, 2008). Rita Raley notes, however, that
of the popular electronic literature of the early
twenty first century, there is “less code per se
than the language of code.” In addition to its
infusion for literary effect, program source code
may be cited in scholarly texts like conventional
citations to explain a point in an argument.
Although it is more common to encounter screen

shots of user interfaces, examples of working
source code appear on occasion in humanities
scholarship. This study will briefly consider why
working code has been largely shunned in most
academic discourse, and then identify the types
and uses of bone fide code that do appear, or are
beginning to appear, in humanities scholarship.
Its goal is to suggest ways in which working
code – understood both as code that works,
and as the practice of working code – plays
a crucial role in facilitating digital literacy
among social critics and humanities scholars,
and demonstrate through a number of examples
how this effect may be achieved.

The first argument in favor of studying computer
code in the context of humanities scholarship
can be drawn from N. Katherine Hayles'
methodological tool of Media-Specific Analysis
(MSA). Probing the differences between
electronic and print media when considering
the same term, such as hypertext, requires
comprehension of the precise vocabulary of
the electronic technologies involved. A second,
more obvious argument comes from the growing
disciplines of Software Studies and Critical Code
Studies. If critical analysis of software systems
is to reveal implicit social and cultural features,
reading and writing program code must be
a basic requirement of the discipline (Fuller,
2008; Mateas, 2005; Wardrip-Fruin, 2009). As
the media theorist Friedrich Kittler points out,
the very concept of what code is has undergone
radical transformations from its early use by
Roman emperors as cipher to a generic tag for
the languages of machines and technological
systems in general; “technology puts code into
the practice of realities, that is to say: it
encodes the world” (Kittler, 2008). Or, following
the title of Lev Manovich's new, downloadable
book, software takes command. Yet both
Kittler and Manovich express ambivalence
towards actually examining program code in
scholarly work. A third argument, which will
form the focus of this study, is reached by
considering the phenomenon of technological
concretization within computer systems and
individual software applications. According
to Andrew Feenberg, this term, articulated
by Gilbert Simondon, describes the way
“technology evolves through such elegant
condensations aimed at achieving functional
compatibilities” by designing products so
that each part serves multiple purposes

Digital Humanities 2010

2

simultaneously (Feenberg, 1999). The problem
is that, from the perspective of a mature
technology, every design decision appears to
have been made from neutral principles of
efficiency and optimization, whereas historical
studies reveal the interests and aspirations of
multiple groups of actors intersecting in design
decisions, so that the evolution of a product
appears much more contingent and influenced
by vested interests. The long history of such
concretizations can be viewed like the variegated
sedimentation in geological formations, so
that, with careful study, the outline of a
technological unconscious can be recovered.
The hope is that, through discovering these
concealed features of technological design, the
the unequal distribution of power among social
groups can be remedied. Feenberg's project
of democratic rationalization responds to the
implicit oppression of excluded groups and
values in technological systems by mobilizing
workers, consumers, and volunteers to make
small inroads into the bureaucratic, industrial,
corporate decision making.

For computer technology in particular, digital
literacy is the critical skill for connecting
humanities studies as an input to democratic
rationalizations as an output. Working code
replaces the psychoanalytic session for probing
the technological unconscious to offer tactics
for freeing the convention-bound knowledge
worker and high tech consumer alike. Many
theorists have already identified the free, open
source software (FOSS) community as an active
site for both in depth software studies and
for rich examples of democratic rationalizations
(Fuller, 2008; Yuill, 2008; Jesiek, 2003). Simon
Yuill in particular elaborates the importance
of revision control software for capturing and
cataloging the history of changes in software
projects. As as corollary to this point, it can be
argued that concealed within these iterations of
source code are the concretizations that make up
the current, polished version of the program that
is distributed for consumption by the end users,
and from which the technological unconscious
may be interpreted. However, even when
they are freely available to peruse in public,
web-accessible repositories, these histories are
only visible to those who can understand
the programming languages in which they
are written. Therefore, it is imperative that
humanities scholars who wish to critically

examine computer technology for its social and
cultural underpinnings include working code
- as practicing programming - in their digital
literacy curricula.

References
Cramer, Florian (2008). 'Language'.
Software Studies: A Lexicon. Fuller, Mattew
(ed.). Cambridge, Mass: The MIT Press, pp.
168-74.

Feenberg, Andrew (1999). Questioning
Technology. New York: Routledge.

Fuller, Matthew (2008). 'Introduction'.
Software Studies: A Lexicon. Fuller, Mattew
(ed.). Cambridge, Mass: The MIT Press, pp. 1-13.

Hayles, N. Katherine (2004). 'Print is flat,
code is deep: the importance of media-specific
analysis'. Poetics Today. 25(1): 67-90.

Jesiek, Brent K. (2003). 'Democratizing
Software: Open Source, the Hacker Ethic, and
Beyond'. First Monday. 8(10) (accessed 5
October 2008).

Kittler, Friedrich (2008). 'Code'. Software
Studies: A Lexicon. Fuller, Mattew (ed.).
Cambridge, Mass: The MIT Press, pp. 40-7.

Mateas, Michael (2005). 'Procedural literacy:
educating the new media practitioner'. On
The Horizon. Special Issue. Future of Games,
Simulations and Interactive Media in Learning
Contexts. 13(1) (accessed 21 October 2009).

Raley, Rita (2002) (8 September 2002).
'Interferences: [Net.Writing] and the practice of
codework'. Electronic Book Review. (accessed 7
October 2009).

Wardrip-Fruin, Noah (2009). Expressive
Processing: Digital Fictions, Computer Games,
and Software Studies. Cambridge, MA: The MIT
Press.

Yuill, Simon (2008). 'Concurrent version
system'. Software Studies: A Lexicon. Fuller,
Mattew (ed.). Cambridge, Mass: The MIT Press,
pp. 64-9.

